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Abstract 

Complementarity solvers are continually being challenged by modelers 
demanding improved reliability and scalability. Building upon a strong 
theoretical background, the semismooth algorithm has the potential to 
meet both of these requirements. We briefly discuss relevant theory as- 
sociated with the algorithm and describe a sophisticated implementation 
in detail. Particular emphasis is given to robust methods for dealing with 
singularities in the linear system and to large scale issues. Results on the 
MCPLIB test suite indicate that the code is robust and has the potential 
to solve very large problems. 
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1    Introduction 

In operations research, complementary slackness arises frequently when con- 
sidering linear programs; at optimality either the dual variable (multiplier) is 
zero or the primal slack variable is zero. However, this is just the tip of the 
iceberg. Not only are the optimality conditions of nonlinear programming a 
complementarity problem, but a whole host of problems from economics and 
engineering are naturally modeled in the complementarity framework [16, 17]. 
In order to make complementarity more accessible to general operations re- 
searchers, recent extensions to the AMPL and GAMS modeling languages have 
been proposed [10, 14], thereby making algorithms such as MILES and PATH 
accessible to general practitioners. Some of the successes of this approach are 
given in [25, 27, 38]. 

However, due to the success of complementarity algorithms at solving large, 
difficult problems, the modeling community has become more adventurous at 
generating even larger and "harder" models, some of which are poorly defined, 
suffer from condition or singularity problems, or contain "non-convexities". Any 
new algorithmic development should attempt to meet the expectations of the 
modeling community; the resulting code must terminate in all cases with ap- 
propriate solutions or error messages, and should solve a vast majority of the 
standard suite of test models [8]. 

In the past few years there has been extensive theoretical research associ- 
ated with the use of nonsmooth Newton methods for complementarity problems, 
with much emphasis on extending the domain of local convergence. Building 
on the success of early iterative linearization algorithms [26, 28], one approach 
is based on a piecewise linear approximation to the normal map [35], and re- 
sulted in the implementation of the PATH solver [9], currently the most widely 
used complementarity problem solver. While it may be argued that piecewise 
linear maps are more effective at approximating piecewise smooth maps, gener- 
ating the "Newton" step typically involves the arduous task of solving a linear 
complementarity problem. A seemingly more attractive approach is to use an 
algorithm based on solving a system of linear equations to generate each "New- 
ton" step. Recent theoretical work has outlined a host of methods with this 
property. Amongst these, the semismooth algorithm [6] appears to have some 
of the strongest associated theory. However, a serious effort to produce a so- 
phisticated implementation has been lacking. 

In this paper, we develop a code based upon the semismooth algorithm. 
We begin by briefly discussing the theoretical foundations of the semismooth 
algorithm. Many of the results contained in the section are given without proof; 
instead, we provide references to the relevant literature. We then present the 
implementation details of the code. The main focus is on the numerical aspects 
of the code used to overcome problems with singularity and ill-conditioning, and 
strategies to recover from finding non-optimal stationary points of the merit 
function. Issues related to the use of iterative solvers for large scale problems 
are outlined. We demonstrate the code's robustness on the problems in the 
MCPLIB [8] test collection by performing two tests, one using direct solution 



methods and another using only iterative techniques. Both indicate that the 
code is reliable and scalable. 

We also compare the semismooth algorithm to PATH, showing comparable 
robustness, albeit using more computational time. These findings demonstrate 
that further investigation is warranted into the use of inexact Newton directions 
and general purpose preconditioners within the context of the semismooth algo- 
rithm. Since the underlying design of the algorithm requires only linear equation 
solutions, adapting much of the extensive literature on iterative solvers would 
undoubtedly be beneficial to the code. 

2    Mathematical Foundation 

We first recall the definition of the mixed complementarity problem (MCP). 
Given lower bounds, l{ G 5RU {—oo}, and upper bounds, Wj G 5ft U {+00}, with 
U < Ui for all i G I := {l,...,n} and a continuously differentiable function, 
F : Kn ->■ Kn, we say that x* G 5ftn l~l [l,u] solves MCP if and only if for each 
i G I one of the following holds: 

x* = h    and    Fi(x*) > 0, 

x* e (li,Ui)    and    Fi(x*) = 0, 

x* = Ui    and    F{(x*) < 0. 

The semismooth solver is based on a reformulation of the mixed comple- 
mentarity problem as a nonlinear system of equations. In order to describe this 
formulation, we first recall that a mapping (p : K2 —¥ 5ft is called an NCP-function 
if it satisfies 

0(a, b) = 0 <=> a > 0, b > 0, ab = 0. 

Two examples of NCP-functions are the Fischer-Burmeister [18] function 

(f>FB(a,b) :=Va2 + b2-a-b (1) 

and the penalized Fischer-Burmeister [4] function 

4>ccK(a, b) := X Ufa2 + b2 - a - b) - (1 - A) max{0, a} max{0, b},     (2) 

where A G (0,1) is a given parameter.   These two functions play an essential 
role in this paper, and we will come back to them in a moment. 

We partition the index set J = {1,..., n} in the following way: 

h =   {iei\ — 00 < lj < Ui = +00}, 

Iu =   {iel\ - 00 = k < Ui < +00}, 

hu =   {* e /1 — 00 < U < Ui < +00}, 

If =   {ie/| — 00 = U < U{ = +00}, 

i.e., 7;, Iu, hu and If denote the set of indices i G I with finite lower bounds only, 
finite upper bounds only, finite lower and upper bounds and no finite bounds 



on the variable Xi, respectively. Hence, the subscripts in the above index sets 
indicate which bounds are finite, with the only exception of If which contains 
the free variables. 

If 4>i, 02 are two (not necessarily different) NCP-functions, we extend an idea 
by Billups [1] and define an operator $ : SRn —► Kn componentwise as follows: 

$i(z) := < 

(j>i{xi -li,Fi(x)) Hi E h, 
—<f>i(ui - Xi,—Fi(x)) ifi e Iu, 
<p2{xi -h,<i>i(ui - Xi,-Fi(x))) Hi e Iiu, 
-Fi(x) iiizlf. 

It is easy to see that 

x* solves MCP  <=>■   x* solves $(x) = 0. 

Note that $ is not in general differentiate. A standard technique to solve the 
mixed complementarity problem is to apply a nonsmooth Newton method (see 
[34, 33]) to the system $(z) =0 and globalize it using the corresponding merit 
function 

9(x) := \*(xr*{x) = \\\*(x)\\\ 

Assuming that ^ is continuously differentiate and recalling that the B-subdifferential 
of $ at a point x € 3?n is defined by [33] 

0B#(S) := {H € 3Txn | 3{xk} C £>$ : xk -> x and *'(i*) -> H}, 

where £>$ denotes the set of differentiate points of $, we can follow the pattern 
from [6] and write down the basic semismooth solver for MCP. 

Algorithm 2.1  (Basic Semismooth Method) 

(5.0) (Initialization) 
Choose x° € Kn,p>0,/3€ (0,1),CT€ (0,1/2),p> 2, and set k := 0. 

(5.1) (Stopping Criterion) 
If xk satisfies a suitable termination criterion: STOP. 

(5.2) (Search Direction Calculation) 
Select an element Hk € dß^{xk). Find a solution dk € SRn of the linear 
system 

Hkd = -$(xfc). (3) 

// this system is not solvable or if the descent condition 

V^{xk)Tdk < -p\\dk\\p (4) 

is not satisfied, set dk := —V\P(a:fc). 

(5.3) (Line Search) 
Compute ijt := max{/9' 11 = 0,1, 2,...} such that 

V{xk + tkd
k) < $(xk) + tkW{xk)Tdk. 



(S.4) (Update) 
Set xk+1 := xk + tkd

k,k^~ k + 1, and go to (S.l). 

Note that Algorithm 2.1 actually represents a whole class of methods since it 
depends heavily on the definition of $ which, in turn, is completely determined 
by the choice of the two NCP-functions fa and fa. Note that, usually, fa plays 
the central role in the definition of $; for example, if there is no variable with 
both finite lower and upper bounds, then fa is not used in the definition of 
$. In particular, this is the case for the standard nonlinear complementarity 
problem. 

For the purpose of this paper, we are particularly interested in the following 
two choices of $. We define 

$FB •= $    if   fa = fa — 4>FB, 

and 

$CCK := $    if    fa - falCK, fa = fa?B- 

The reader may wonder why we do not take fa = faiCK as well; the simple rea- 
son is that we were unable to prove some of the subsequent results for this case. 
In fact, basically all of these results are based on a suitable overestimation for 
the generalized Jacobian 9$(z). Typically, such an overestimation can be ob- 
tained by exploiting Theorem 2.3.9 in [5] that contains a convex hull operation. 
It is often possible to remove this convex hull and to get a simpler overestimate 
for d${x). However, when using fa = fa = 4>CCK, we were not able to remove 
the convex hull, so we decided not to take fa = faicx m the definition of the 
operator $CCK- 

Both from a theoretical and a numerical point of view [4], the operator $CCK 

has stronger properties than $FB, at least for the standard nonlinear comple- 
mentarity problem. Hence §CCK will be used by default in our implementation 
of Algorithm 2.1. However, in some situations, it is also helpful to have alterna- 
tive operators like $FB ■ For example, our implementation uses $FB to perform 
restarts. 

We now summarize some of the properties of $FB and <&CCK as well as of 
their corresponding merit functions 

1 1 
$FB(X) := 2$FB(X)

T
$FB(X)    and    %CCK(X) := ^CCK{X)

T
^CCK{X). 

The proofs of the results can be found in [11] for the case of $ = $fB. Since the 
proofs for $ = $CCK are very similar (although quite technical and lengthy), 
we skip the proofs of all these results here. 

Proposition 2.2 Let $ belong to {$FB,$CCK} and * be the corresponding 
merit function. Then the following hold: 

1. $ is semismooth. 

2. If F' is locally Lipschitzian, then $ is strongly semismooth. 



3. \P is continuously differentiable on ffl1. 

4. If x* be a strongly regular solution of MCP, then x* is a BD-regular solu- 
tion o/$(z) =0. 

For a precise definition of (strong) semismoothness we refer the reader to [30, 
34, 33]. Here, we only note that (strong) semismoothness is one of the two 
ingredients which are needed to prove local (quadratic) super-linear convergence 
of a nonsmooth Newton method. The second ingredient is the so-called BD- 
regularity assumption. A solution x* of $(2) =0 is called BD-regular if all 
matrices H G 8B${X) are nonsingular. A strongly regular solution of MCP is 
defined in the sense of Robinson [36]; see also [11] for additional details. 

The previous result allows us to state the following convergence properties 
of Algorithm 2.1. The proof is analogous to those given in [6] for *jrß and the 
standard nonlinear complementarity problem. 

Theorem 2.3 Let $ € {$FB,$CCK} and {xk} be a sequence generated by 
Algorithm 2.1. Then any accumulation point of this sequence is a stationary 
■point of \P. Moreover, if one of these accumulation points, say x*, is a BD- 
regular solution of <&(x) — 0, then the following statements hold: 

(a) The entire sequence {xk} converges to x*. 

(b) The search direction dk is eventually given by the Newton equation (3). 

(c) The full stepsize tk = 1 is eventually accepted in Step (S.3). 

(d) The rate of convergence is Q-super-linear. 

(e) If F' is locally Lipschitzian, then the rate of convergence is Q-quadratic. 

3    The Linear System 

The heart of the semismooth algorithm lies in the linear algebra. Most of the 
time is spent solving the Newton system, Hkd = -^(a;*), where in general Hk 

is neither symmetric nor positive definite. Effective mechanisms for solving this 
system using either iterative techniques or a direct method are indispensable 
and have great impact upon the success of the algorithm. The key advantage 
of the semismooth algorithm over PATH [9] is that the former only solves a 
single linear system per iteration while the latter uses a pivotal based code to 
solve a linear complementarity problem. The pivotal based code relies upon 
the availability of a direct factorization and rank-1 updates which limits its 
applicability to medium sized or large, structured problems. Semismooth has 
no such restriction. 

We begin our analysis by investigating iterative techniques for finding the 
Newton direction as these will enable the algorithm to solve very large prob- 
lems. We present three of the methods considered and discuss time and space 
requirements and scaling issues. The methods were evaluated by applying them 



to two reasonably large models representative of the test suite. Prom the results, 
we conclude that LSQR [32] is the most reliable. Practical termination criteria 
are also mentioned. 

We then discuss the issues involved and options available when using direct 
methods. The main difficulty encountered is singularity in the Newton system. 
Information on detecting singularity and using that knowledge to construct a 
useful direction even in this case is presented. The effects of the techniques 
considered on the singular models in the test set are given and our final choice 
of strategies for solving the linear system is provided. 

Wherever possible, we want to use the best available technique to determine 
the Newton direction. While LSQR is very reliable, typically the best technique 
in terms of time is to use a direct method to factor Hk. However, when the 
size of the factors grows too large, we want to resort to the iterative technique. 
Therefore, the rules implemented are designed so that large, structured problems 
with sparse decompositions will use the factorization software, while problems 
that are either very dense or have large factors will not. Currently, a restriction 
on the size of the decomposition of 12 million nonzeros is imposed. We no longer 
consider using a direct method if this condition is violated. 

3.1    Iterative Techniques 

Three iterative techniques for finding the Newton direction were investigated: 
LSQR, GMRES, and QMR. We recall that the systems of equations solved 
will generally be neither symmetric nor positive definite. Therefore, we cannot 
directly use the popular techniques from optimization algorithms such as conju- 
gate gradients. The algorithms tested are a representative set of those meeting 
our requirements. 

LSQR [32] is based upon the bidiagonalization method developed in [22] 
which implicitly solves the least squares problem, min ||i?fcd+ $(a;*)|| • The 
method is essentially a reliable variant of conjugate gradients applied to the 
normal equation, Hjj;Hkd = -Hk

r^{xk). The code only requires a workspace of 
3 n-vectors in addition to the storage of Hk, d, and $ {xk). The cost per iteration 
consists of 4nnz + 12n floating point operations, where nnz is the number of 
nonzero elements in Hk ■ 

The GMRES [37] method uses the Arnoldi procedure to construct an or- 

thonormal basis for the Krylov subspace K,m \Hk, 
_pjft)i[J' wnere 

ICm(A,r) := span {r, Ar,..., A"1'1 r} 

for some matrix A 6 Knxn and a vector rgKn. We then use this basis to^nd a 
vector in the generated subspace minimizing the residual, \\Hkd + $(a;fc) || . Our 
implementation uses Householder reflections for the orthogonalization process 
to preserve stability, maintains the current optimal value of the residual at each 
iteration using plane rotations, and restarts after m iterations. We remark 
that because our matrices are not guaranteed to be positive definite, restarted 
GMRES can stagnate and make no progress.   The method has a workspace 



requirement of (rn + 2) n- and 4 m-vectors and uses Irmz + 4n(l + 2i) - 4i2 

operations per iteration where i G [l,m] is the iteration number. Furthermore, 
we use around 4mn operations at the end of each m iterations to generate the 
minimizing vector. The main difficulty with GMRES lies in choosing the restart 
frequency. If it is too small, we can fail to converge entirely, and if it is too large, 
the per iteration cost and storage requirements become significant. 

The QMR [37] algorithm uses the Lanczos biorthogonalization algorithm to 

construct bases for the Krylov subspaces K,m (Hk, 
_p(S)j| ) an(^ ^m (J^k > ~~ ||*(x*')||) 

satisfying a biorthogonality condition. The bases generated are then used to 

find a vector with approximate minimum residual in Km (Hk, ~||$(^)|| )- ^he 

QMRPACK [20] code tested uses the coupled two-term recurrence variant of 
the look-ahead Lanczos algorithm. We allowed rn look-ahead steps to be tried, 
which results in a workspace of 10m + 1 n- and 8m + 18 m-vectors. Typically, 
m is chosen to be small. The code uses at least Annz + 14n floating point oper- 
ations per iteration and requires a backsolve at the end to determine the vector 
with approximate minimal residual. 

Scaling the linear system is crucial to the success of the iterative algorithms. 
We define a matrix scaling using the following diagonal matrices R, C € 5RnX™ 
with diagonal entries: 

Ri,i = ,   ,  r, (5) 
max { y/ii{x'°)*+'Ei (Hk)h, lO"10 } 

Cjj = 1   ,        
l         T (6) 

max {y/E^HÜ^, 10-10} 

We solve the linear system RHkCC~ld = -R$(xk) by defining d := C_1d, 
solving the system RHkCd = -i?$(xfc), and recovering the Newton direction 
as d = Cd. This procedure scales the rows and then the columns so that each 
has a two norm of 1. The constants in the max operator are used to avoid 
division by zero errors. When a row or column has a two norm close to zero, 
the scaling has no effect. Scaling significantly reduces the number of iterations 
required in all cases and thus the total time spent in the iterative solver. 

3.1.1    Evaluation 

We selected two reasonably large models with known solutions from the test 
suite on which to evaluate the iterative techniques. The Uruguay model has 
2,281 rows/columns and 90,206 nonzeros and is interesting because a direct 
factorization incurs a large amount of fill-in. opt_cont255 is a structured prob- 
lem with 8,192 rows/columns and 147,200 nonzeros. For each complementarity 
model, we only solved the first linear system arising from (3). The termination 

criteria for these tests was based upon the relative residual, " °\\${x0)\\— • ^e 

iterative methods terminated when the relative residual is less than 10"8. In all 
cases, we chose an initial guess of d0 := 0. We did not investigate other choices. 



Method Iterations Time Status Relative Error 
LSQR 908 43 Solved 1.0e-8 
GMRES 10 1,766 47 Solved 1.0e-8 
GMRES 20 1,346 46 Solved 1.0e-8 
GMRES 50 799 45 Solved 9.9e-9 
GMRES 100 481 45 Solved 9.7e-9 
GMRES 200 419 54 Solved 9.9e-9 
QMR 466 41 Solved 6.5e-9 

Table 1: Iterative Method Results: Uruguay 

Method Iterations Time Status Relative Error 
LSQR 2,848 90 Solved 9.9e-9 
GMRES 10 100,000 2,114 Iteration Limit 8.7e-4 
GMRES 20 100,000 3,194 Iteration Limit 2.6e-4 
GMRES 50 100,000 6,217 Iteration Limit 6.0e-5 
GMRES 100 100,000 11,498 Iteration Limit l.le-5 
GMRES 200 100,000 22,136 Iteration Limit 5.4e-8 
QMR 100,000 5,288 Iteration Limit 1.6e-7 

Table 2: Iterative Method Results: opt_cont255 

When using the GMRES method, we need to choose the restart frequency. 
We varied the value of m by choosing values between 10 and 200. The results 
for each value of m tested are given in the accompanying tables. For QMR, we 
need to determine the number of look-ahead steps allowed. We placed an upper 
limit of 20 on these steps, although smaller values would suffice. 

All of the trials were run on the same machine using the same executable 
so that we can make a valid comparison. Tables 1 and 2 report the results on 
the two test problems. The total iterations and time, exit status, and relative 
residual at the final point are given. Based upon the available information, we 
conclude that LSQR is the best choice for our purpose. This method is quite 
effective for the models we have generated. However, it may require a large 
number of iterations in order to converge. In these situations we are willing 
to sacrifice speed in exchange for reliability. Note that results shown later 
demonstrate the robustness of LSQR on the entire test suite. The robustness 
and effectiveness of LSQR is also in accordance with the results of [7]. 

3.1.2     Termination Rules 

While the termination rule given above is reasonable for evaluation, we now 
return to the subject of practical termination rules. The relative residual cal- 
culated above is not applicable as a termination criterion unless we know a 
priori that the linear model has a solution. This is an unreasonable assumption 



to make.   Therefore, our implementation of LSQR use's the termination rules 
developed in [32]. They are to terminate if any of the following holds: 

1. cond(ff*) > CONLIM 

2. Hi-ill < BTOL ||$(xfc)|| + ATOL ||Hfc|| ||d,|| 

T„ 
3- IpÄli ^ AT0L 

where n = —{Hudi + $(xk)). Justification of these rules and a demonstration 
of their effectiveness is given in [32]. We note that LSQR builds up estimates of 
\\Hk\\ and cond(.fffc) by performing a small amount of additional computation 
per iteration of the code. The exact tolerances used are ATOL = es, BTOL = 
es, and CONLIM = J^J where e is the machine precision. Furthermore, an 
iteration limit of min{100000, 20n} was used. These tolerances force us to find 
a point close to the exact solution of the linear system if it exists. We did not 
investigate using less stringent termination criteria. 

3.2    Direct Methods 

We now turn our attention towards the issues involved in using direct methods 
to solve the Newton system. The factorization software needs to have routines to 
factor and solve, and should be able to uncover singularity problems and make a 
good approximation of the linearly dependent rows/columns in such cases. For 
reasonably sized problems we use the LUSOL [21] sparse factorization routines 
contained in the MINOS [31] nonlinear programming solver to factor Hk and 
solve for the Newton direction. The authors of this package have investigated 
the effects of modifying tolerances in the factorization on general linear systems 
and have suggested defaults which we have adopted for all our results. 

The major difficulty with the direction finding problem is dealing with those 
instances where the Newton system does not have a solution. These singularity 
problems frequently occur in real world applications. However, the theoretical 
algorithm only provides a crude mechanism in this case, i.e. the use of a gradient 
step, while other approaches may be more effective. Clearly, any practical im- 
plementation of the semismooth algorithm must include appropriate procedures 
to deal with singularity. 

Following the success of scaling for the iterative techniques, we first inves- 
tigate the applicability of scaling in conjunction with direct methods to avoid 
ill-conditioned systems. We then look at techniques to determine a useful di- 
rection when the model is singular, including using gradient steps, diagonal 
perturbations of Hk, and finding least squares solutions to the linear system. 
Empirical evidence is provided upon which we evaluate the methods. 

We note here that the only requirements for the direct method are factor 
and solve routines and some way to determine singularity. The structure of 
the matrix to be factored does not change among iterations. Factorization 
routines other than LUSOL might be able to use this information to perform the 
factor/solve operations faster. However, we did not investigate this possibility. 

10 



Scaling 
Detected 

Singular Matrices    Failures     Time 
None 2138 28 13,922 
Diagonal 2248 30 12,780 
Matrix 1331 30 12,901 

Table 3: Scaling Effects on Direct Methods 

3.2.1     Scaling 

LUSOL contains routines to detect when a matrix is singular or nearly singular. 
We study in this subsection the effects of scaling the linear problems in an effort 
to improve the conditioning of the matrices that we request to factor. Our goal 
is to see if we can significantly reduce the number of occurrences where the 
factorization package determines that the matrix is singular. By using scaling 
we hope to improve the overall reliability of the code on ill-conditioned problems. 

Two different scaling schemes were tested on the problems in the test set 
along with the default of no scaling. The first technique is the diagonal scaling 
used in the PATH solver. In this case, we define a row scaling by looking at 
elements of the diagonal of Hk which are large and scale the entire row of the 
problem. Formally, we define a diagonal matrix R such that if \(Hk)i,i\ > 100 
then Riti = ^R. ., and Riti = 1 otherwise. We then try to factorize the scaled 
matrix RHk- 

The other scaling method is the matrix scaling as used in the iterative tech- 
niques. We use diagonal matrices defined in (5) and (6) and attempt to factorize 
RHkC. 

There are costs associated with scaling. Of the two methods, matrix scaling 
is more expensive per iteration because it requires looking at the data twice. 
We tested all of these scalings on the models in the entire test set and report in 
Table 3 the number of detected singular solves, failures of the algorithm to find 
a solution, and total time in seconds over the entire test set. When a singular 
model was detected we use the least squares recovery method detailed in Section 
3.2.2. Since diagonal scaling does not improve significantly over no scaling, we 
disregard this method. The reason for this poor behavior is probably due to the 
fact that the diagonal elements do not necessarily reflect the actual scaling of the 
problem. Matrix scaling significantly reduces the number of singular systems 
detected. However, it does result in additional failures of the algorithm. Since 
we were unable to definitively choose between no scaling and matrix scaling, in 
the next section we look at recovery techniques and report results for both. 

Before continuing, we note that the scaling investigated here is not very ex- 
haustive and more complex schemes might be tested. Furthermore, the scaling 
is being performed on the linear model, when it might be more appropriate to 
look at the nonlinear model to determine the scaling. Finally, we did not inves- 
tigate modifying other parameters, such as those encountered in the nonlinear 
model in Section 4, in conjunction with scaling which might lead to improved 

11 



Scaling 
none 
matrix 

Failures    Time 
28 4,836 
24 3,630 

Table 4: Gradient Results on 194 Singular Models 

reliability and performance. 

3.2.2    Singularity 

Having looked at scaling we need to establish procedures to recover from the 
singularity problem and generate a reasonable direction. We have investigated 
three techniques. The first is the theoretical standby of using only gradient 
steps when the Newton system is unsolvable. A second technique is to use a 
diagonal perturbation of Hk to regularize the problem. The final method is to 
use LSQR to calculate a least squares solution of the system. All of the results 
in this section are only given for those models where singularity was detected 
by the linear solver. Only a few options were changed for each run, with the 
rest being held constant. 

Gradient Steps The naive recovery technique, and the simplest of those 
considered, is to simply resort to a gradient step whenever a singular model 
is detected. This approach is theoretically justified, but in practice frequently 
leads to a stationary point that does not solve the complementarity problem. 
However, we use this approach as the baseline against which we evaluate the rest 
of the methods. The results are given in Table 4 where we report the number of 
times the algorithm failed and total time for both scaled and unsealed models. 
In this case, we note that matrix scaling performs better than no scaling. 

Perturbation Perturbation involves replacing the linear model with one which 
does not have a singularity problem. We investigated using a diagonal pertur- 
bation where we replace Hk with Hk + XI for some A > 0. A was chosen in the 
interval [a,ß], with A = 7$ whenever possible. We used values of a = 10~8, 
ß = 1 and 7 = JQ. When the perturbation is insufficient to overcome the singu- 
larity, we increase A to 8A for some S > 1. We currently use 6 = 10, and allow 
the perturbation to increase only one time per iteration. 

The other choice to make is when to add the perturbation. There are two 
options investigated: 

• If the first model encountered is singular, calculate a A and monotonically 
decrease it from one iteration to the next. The new value is min {KI A, K-2^f} 
where KI = 0.4 and K2 = 0.1 by default. This strategy is used in the PATH 
code. 

• Every time a singular model is encountered, calculate a value for A. 
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Scaling Strategy Failures Time 
none first 21 8,910 

demand 21 3,285 
matrix first 20 8,210 

demand 23 2,703 

Table 5: Perturbation Effects on 194 Singular Models 

Scaling 
none 
matrix 

Failures    Time 
9 8,513 
11 7,534 

Table 6: LSQR Results on 194 Singular Models 

When scaling was used, we first perturbed the problem and then scaled it. 
To test these strategies, we ran the set of singular models using each of the 

options. We report the number of failures in the algorithm and total time in 
Table 5. When the perturbation fails to find a nonsingular matrix, the least 
squares method (to be described in the next section) was used to calculate a 
direction. The use of perturbation leads to fewer total failures than only using 
the gradient method. The effects of scaling the problem are mixed, with it 
leading to a decrease in total time, but sometimes resulting in additional total 
failures. 

Least Squares Method Finally, we investigate the use of the LSQR iterative 
scheme to find a solution to the least squares problem min \\Hkd + $(rcfc) II and 
use the resulting d as our Newton direction. The practical termination rules 
mentioned in 3.1.2 were used. 

We investigated using scaling and no scaling in the linear model that we 
try to factor. We present the results on the singular models in Table 6 where 
we report the total number of failures in the algorithm and time. The major 
downside to using the iterative technique to solve the least squares problem is 
that it is fairly slow because we allow many iterations and have low tolerances. 
We did not study the effect of changing the termination criteria. However, the 
results indicate that this method is better than the others tested in terms of 
reliability. 

3.3    Summary 

The empirical results given above provide clear choices. For both large scale 
work and calculating a direction when the Newton system is singular we will 
use the LSQR iterative technique. We remark that while this is the most reliable 
choice, it is perhaps not the most efficient method. While we always scale the 
linear system when an iterative solver is used, the effects of scaling the matrix 
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we try to factor are indeterminant and we made the decision to use no scaling to 
achieve simplicity in the code. The effect of choices made in the nonlinear model 
which are discussed in the next section have a great impact upon the success 
of the algorithm. However, we did not investigate modifying those strategies in 
conjunction with the strategies in the linear solver. 

4    The Nonlinear Model 

At the nonlinear level of the algorithm, we are concerned with properties of 
the algorithm affecting convergence. These include numerical issues related to 
the merit function and calculation of Hk as well as crashing and the recourse 
taken when a stationary point of the merit function is encountered. These issues 
are discussed in the following subsections. We then summarize the results and 
present the final strategies chosen. 

A difficulty with the semismooth code occurs when F is ill-defined because 
no guarantee is made that the iterates will remain feasible with respect to the 
box [l,u]. Such problems arise when using log functions or real powers which 
frequently occur in applications. Backtracking away from places where the 
function is undefined and restarting is typically sufficient for these models. 

4.1    $(xfc) and Hk 

As mentioned in Section 2, our implementation will use the penalized Fischer- 
Burmeister merit function. The value of A chosen in (2) can have a significant 
impact upon the performance of the semismooth algorithm. We note that small 
values of A, say less than 0.5, should not be used. In the case of NCP, empha- 
sis would be placed upon the max{0,Fi(a;*:)}max{0,xf} term of the penalized 
Fischer-Burmeister function. This term is related to the complementarity error, 
but does not enforce Fi(xk) > 0 and x\ > 0. If we were to solve the problem 
exactly, we would not be concerned. However, we use inexact arithmetic and 
terminate when the merit function is small, i.e. less than 10-12. This crite- 
ria opens the possibility of finding a point satisfying the termination tolerance 
which is not close to a solution. The default choice in our implementation is to 
have A = 0.8 which can be changed using the chen_lambda option. 

Furthermore, despite the fact that the penalized Fischer-Burmeister function 
is typically superior, there are some situations where the original function might 
be more appropriate. Therefore, when using restarts (see Section 4.3.2) we also 
might change the merit function. This is done by modifying the merit_f unction 
option to f ischer or chen for the standard and penalized Fischer-Burmeister 
functions. 

We also note that when fa ^ fa, there are two different representations 
for $ that lead to different performance. This situation only occurs when both 
variables are bounded (which is the only case when fa is used). In this case, we 
use 

fa(xi -li,fa(ui -Xi,-Fi(x))). 

14 



A symmetric alternative is to use 

-4>2{ui -Xi,(j>i{xi -li,Fi(x))). 

Both of these functions are equally valid and can lead to different sequences of 
iterates being evaluated. We did not investigate this option further. 

The calculation of (f>(a, b) needs to be performed in such a way as to minimize 
the effect of roundoff error. If we have a — 10-4 and b = 104 and are using 
a machine with 6 decimal places of accuracy, a naive calculation of <j>(a, b) = 
%/a2 + b2 — a — b would produce zero leading us to believe that we are at a 
solution to the problem when in fact we are not as the following calculation 
indicates: 

\/l0-8 + 108 - 1CT4 - 104 

= v/lÖ8 - 1(T4 - 104 

= 104 - 1(T4 - 104 

= 10" - 104 

= 0. 

The actual value of (f){a,b) should be on the order of —10~4. A better way to 
calculate <p(a, b) is as follows: 

1. If \a\ > \b\ then cf>{a, b) = (\/a2 + b2 - a) - b. 

2. Otherwise <j>{a, b) = (\/a2 + b2 - b) - a. 

This method gives a more accurate value of 4>. The square root operation needed 
is computed by defining s = |a| + |6|. Ifs = 0 then the value is zero, otherwise 
S\A?)2 + («)2 's *ne vame computed. This eliminates overflow problems. 

The calculation of Hk uses the procedure developed in [1, 6] for the Fischer- 
Burmeister function, and for the penalized function, a modification of the method 
in [4] extended for MCP models. 

4.2    Crashing 

Projected gradient crashing before starting the main algorithm can improve the 
performance of the algorithm by taking us to a more reasonable starting point. 
To do this, we use a technique already tested in [7] and add a new step, S.Oa, 
to the algorithm between S.O and S.l. Let [-]B be the projection of (•) onto the 
box B = [l,u]. In this new step, we start with j = 0 and perform the following: 

1. Calculate d? = -V$(a;^). 

2. Let tj ~ max{ßl 11 = 0,1,2,...} such that 

${[xj + tjdj]B) < *(a,J) - TW(Z
J
')

7
V - [xj + tjdj]B). 

3. If tj < T stop and set a:0 = xK 
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4. Otherwise let xj+1 = [xj + tjdj]B and j = j + 1. Go to 1. 

In the code r = 10~5 and ß — 0.5; furthermore, we only allow 10 iterations of 
the projected gradient crash method. 

The crashing technique presented has iterates that remain feasible and im- 
prove upon the initial point with respect to the merit function. We believe 
that this is the key benefit from crashing - all iterates remain in B. Otherwise 
poor values of a;0 can frequently lead to failures in the semismooth algorithm. 
The crashing technique also gives us the opportunity to significantly affect the 
iterates generated during a restart. Crashing can be turned off with the option 
crashjnethod none. 

4.3    Stationary Points 

While stationary point termination is typically adequate for nonlinear optimiza- 
tion, determining a stationary point of the residual function that is not a zero 
is considered a "failure" by complementarity modelers. Much theoretical work 
has been carried out determining the weakest possible assumptions that can 
be made on the problem (and/or the algorithm) in order to guarantee that 
a stationary point of the merit is in fact a solution of the complementarity 
problem. Some of these results restrict the problem class considered by employ- 
ing convenient assumptions that cannot be easily verified for arbitrary models. 
Other techniques (such as non-monotone linesearching) rely on a combination 
of heuristics and theory, while others are entirely heuristic in nature. The basic 
strategies we used to improve the reliability of the semismooth solver include 
non-monotone linesearching and restarting. The positive effects of these strate- 
gies have been demonstrated in the literature and we just present the basic idea 
and any modifications made. 

4.3.1    Non-monotone Linesearch 

The first line of defense against convergence to stationary points is the use of a 
non-monotone linesearch [23, 24, 12]. In this case we define a reference value, 
Rk and we use this value to replace the test in step S.3 of the algorithm with 
the non-monotone test: 

9{xb + tkd
k) <Rk + tkV${xk)Tdk. 

Depending upon the choice of the reference value, this allows the merit function 
to increase from one iteration to the next. This strategy can not only improve 
convergence, but can also avoid local minimizers by allowing such increases. 

We now need to detail our choice of the reference value. We begin by letting 
{Mi,..., Mm} be a finite set of values initialized to K^(X°), where K is used to 
determine the initial set of acceptable merit function values. The value of K de- 
faults to 1 in the code and can be modified with the nms_initialjref erencejf actor 
option; K = 1 indicates that we are not going to allow the merit function to in- 
crease beyond its initial value. 
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Having defined the values of {Mi,..., Mm} (where the code by default uses 
m = 4), we can now calculate a reference value. We must be careful when we 
allow gradient steps in the code. Assuming that dk is the Newton direction (or 
a least squares solution to the Newton system in the presence of singularity, 
see 3.2.2), we define io — argmax Mj and Rk = Mj0. After the non-monotone 
linesearch rule above finds £*, we update the memory so that Mio — $(xk+tkdk), 
i.e. we remove an element from the memory having the largest merit function 
value. 

When we decide to use a gradient step, it is beneficial to let xk = x"es^ where 
^best js ^ne point wj^n the absolute best merit function value encountered so far. 
We then recalculate dk = —V$(a;fc) using the best point and let Rk = $(xk). 
That is to say that we force decrease from the best iterate found whenever a 
gradient step is performed. After a successful step we set Mi = 9(xk + tkdk) 
for all i S [1,... ,m]. This prevents future iterates from returning to the same 
problem area. 

A watchdog strategy [3] is also available for use in the code. The method 
employed allows steps to be accepted when they are "close" to the current 
iterate. Non-monotonic decrease is enforced every m iterations, where m is set 
by the nms_mstep_f requency option. Currently, we use this strategy only in a 
restart. 

4.3.2    Restarting 

The rules for non-monotone linesearching and crashing are extremely useful in 
practice, but do not preclude convergence to a nonoptimal stationary point. 
One observation relevant for complementarity solvers is that we know a priori 
the optimal value of the merit function at a solution if one exists. If the code 
detects that the current iterate is a stationary point that is not a solution, 
a recovery strategy can be invoked. One successful technique is the restart 
strategy [15] where the recovery mechanism involves starting over from the user 
supplied starting point with a different set of options, thus leading to a different 
sequence of iterates being investigated. For the semismooth algorithm we use 
the restarts defined in Table 7. In addition, the first restart of the semismooth 
code will also include the option chen_lambda 0.95 if no crash iterations were 
performed in its first run; otherwise, we would waste computational resources 
by generating the exact same sequences of iterates as the first attempt. 

We caution that the restarts should be applicable to general models, oth- 
erwise they are not likely to be beneficial to the unseen problems encountered 
in the real world. That is, if we were to use the restart definition as the de- 
fault, we should still solve most problems in the test set. We present in Table 8 
the numbers of failures on the test set when the particular restart options were 
used. Note that the restarts (0, 1 and 2) using the penalized Fischer-Burmeister 
function given in equation (2) outperform the one using the standard Fischer- 
Burmeister function defined in equation (1). 
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Restart Number Parameter Values 
1 crash-method none 
2 chenJambda 0.95 

crash_method none 
nms_mstep_frequency 4 
nms Jnitial_reference_factor 5 

3 crash_method none 
merit Junction fischer 
nms_mstep_frequency 1 
nms_initial_reference_factor 1 

Table 7: Restart Definitions 

Failures 
Restart Number    GAMSLIB    MCPLIB 
0 (first run) 3 63 
1 3 63 
2 3 64 
3 12 76 

Table 8: Restart Performance on 102 GAMSLIB and 533 MCPLIB Problems 

5    Numerical Results 

Our implementation of the semismooth algorithm uses an enhanced version of 
the basic framework developed in [15] which helps to provide portability across 
platforms and interfaces to the algorithm from the AMPL [19] and GAMS [2] 
modeling languages, and the NEOS [13] and MATLAB [29] tools. The LU- 
SOL [21] sparse factorization routines contained in the MINOS [31] nonlinear 
programming solver were used for factorization purposes. 

All of the linear algebra and other basic mechanisms are exactly the same 
between the semismooth algorithm and PATH. Therefore, the comparison made 
is as close to a true comparison of the algorithms as we can make. We note that 
the PATH code is much more mature than the semismooth implementation. 
Both codes are continually being improved when deficiencies are uncovered. 

Finally, we remark that the factorization routine is a key component of 
the implementation. For the semismooth algorithm, we know the structure of 
the matrix to be factored and this structure does not change from iteration to 
iteration. Furthermore, rank-1 updates to the matrix are not required. These 
observations indicate that a factorization routine other than those provided by 
LUSOL might be more effective for the semismooth algorithm. However, we 
sacrifice some potential speed gains in preference for having a consistent choice 
of direct method among the codes tested. 

To test the standard algorithm, we ran the code on all of the problems in 
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the GAMSLIB and MCPLIB [8] suites of test problems. All of the models in 
GAMSLIB were solved and are not reported here. Also note that the MCPLIB 
suite is being constantly updated, and several of the problems tested in this 
paper have been added recently to enhance the difficulty of the test suite. In 
Tables 9 and 10 we present the results on the MCPLIB problems. The number 
of successes is reported first, followed by the number of failures in parenthesis. 
In order to test the reliability of the iterative method, we ran all of the models 
using only the iterative LSQR technique to calculate the Newton direction. 
For comparison purposes, we also show the performance of PATH 4.0 [11] on 
the same problems. These latter two results are given in the columns labeled 
"Iterative" and "PATH 4.0" respectively. In order to condense the information 
in the table, we have grouped several similar models together whenever this 
grouping results in no loss of information; for example, problems colvdual and 
colvnlp are grouped together as example colv*. We split the results into those 
that allow restarts and those that do not. 

These results indicate that while the semismooth implementation is not quite 
as reliable as PATH, it does exceedingly well and is very robust. Furthermore, 
the results indicate that the iterative method is also robust and requires much 
less memory resources. 42 of the additional failures in the "Iterative" column 
occur in the asean9a, denmark, and opt_cont511 models in which the time limit 
was encountered. We also note that the restart heuristic significantly improves 
the robustness of both semismooth and PATH. 

We currently do not have any results on very large problems, but believe 
that based on the evidence, the code will scale well to the larger problems. In 
particular, the iterative version of the semismooth code requires significantly 
less memory than PATH, allowing the possibility of solving huge models. The 
current drawback of the semismooth code is the time taken by LSQR to solve 
the linear systems. We designed the code for robustness, and therefore chose 
parameters in the code to enhance reliability. This results in the PATH solver 
being much faster than the semismooth code - over the complete test suite, 
PATH took 2480 seconds, while the default version of semismooth took 13902 
seconds and the iterative only version took 95491 seconds. When we only count 
the times where both solvers succeed, the results are much closer with PATH 
using 1823 seconds and semismooth 4332 seconds. However, as outlined in the 
introduction, we believe that many of the standard techniques for improving 
iterative linear equation solvers are applicable in the context of the semismooth 
algorithm. This is the topic of future research. 

We have shown that a semismooth algorithm can be implemented as a very 
robust MCP solver. Particular care needs to be taken in implementing the 
evaluation of $ and *, and in treating numerical issues related to constructing 
the Newton step. The algorithm has great potential in the very large scale 
setting as indicated by our preliminary computations. 
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Problem Without Restarts 
Semi     Iterative    PATH 4.0 

With Restarts 
Semi    Iterative    PATH 4.0 

asean9a, hanson 
badfree, degen, qp 
bert-oc 
bertsekas, gafni 
billups 
bishop 
bratu, obstacle 
choi, nash 
colv* 
cycle, explcp 
denmark 
dirkse* 
duopoly 
eckstein 
ehlJc* 
electric 
eppa 
eta2100 
force* 
freebert 
games 
gei 
golanmcp 
hanskoop 
hydroc*, methan08 
jel, jmu 
josephy, kojshin 
keyzer 
kyh* 
lincont 

3(0 
3(0 
4(0 
9(0 
0(3 
0(1 
9(0 
5(0 
9(1 
2(0 

30(10) 
0(2 
0(1 
1(0. 

12(0) 
1(0 
8(0 
1(0 
0(2 
7(0 

25(0) 
2(0 
0(1 
8(2 
1(2 
2(1 
16(0) 
3(3 
0(4 
1(0 

2(1 
3(0 
4(0 
9(0 
0(3 
0(1 
9(0 
5(0 
9(1 
2(0 

0(40) 
0(2 
0(1 
1(0 

12(0) 
0(1 
8(0 
1(0 
0(2 
7(0 

25(0) 
2(0 
0(1 
8(2 
1(2: 
2(1 
16(0) 
3(3 
0(4 
1(0 

3(0 
3(0 
4(0 
9(0 
0(3 
1(0 
9(0 
5(0 
10(0) 
2(0 

40(0) 
1(1 
0(1 
1(0 
8(4 
0(1 
8(0 
1(0 
2(0 
7(0 

20(5) 
1(1 
1(0 

10(0) 
3(0 
3(0 
16(0) 
6(0 
2(2 
1(0 

3(0 
3(0 
4(0 
9(0 
1(2 
0(1 
9(0 
5(0 
10(0) 
2(0 

40(0) 
0(2 
0(1 
1(0 

12(0) 
1(0 
8(0 
1(0 
2(0 
7(0 

25(0) 
2(0 
0(1 
10(0) 
3(0 
2(1 
16(0) 
5(1 
0(4 
1(0 

2(1 
3(0 
4(0 
9(0 
0(3 
0(1 
9(0 
5(0 
10(0) 
2(0 

0(40) 
0(2 
0(1 
1(0 

12(0) 
1(0 
8(0 
1(0 
2(0 
7(0 

25(0) 
2(0 
0(1 
10(0) 
3(0 
2(1 
16(0) 
5(1 
0(4 
1(0 

3(0 
3(0 
4(0 
9(0 
0(3 
1(0 
9(0 
5(0 
10(0) 
2(0 

40(0) 
2(0 
1(0 
1(0 

12(0) 
1(0 
8(0 
1(0 
2(0 
7(0 

25(0) 
2(0 
1(0 

10(0) 
3(0 
3(0 
16(0) 
6(0 
3(1 
1(0 

Table 9: Comparative Results 
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Problem Without Restarts With Restarts 
Semi Iterative    PATH 4.0 Semi Iterative    PATH 4.0 

markusen 31(1) 31(1)           32(0) 32(0) 32(0)           32(0) 
mathi* 13(0) 13(0)           13(0) 13(0) 13(0)           13(0) 
mrtmge 1(0) 1(0)             1(0) 1(0) 1(0)             1(0) 
multi-v* 0(3) 0(3)             2(1) 3(0) 3(0)             3(0) 
ne-hard 0(1) 0(1)             1(0) 0(1) 0(1)             1(0) 
olg 0(1) 0(1)             1(0) 1(0) 0(1)             1(0) 
opt.cont* 5(0) 4(1)             5(0) 5(0) 4(1)             5(0) 
pgvon* 3(9) 2(10)            4(8) 3(9) 4(8)             6(6) 
pies 1(0) 0(1)             1(0) 1(0) 1(0)             1(0) 
powell* 10(2) 10(2)            12(0) 12(0) 12(0)            12(0) 
ralph 8(0) 8(0)            8(0) 8(0) 8(0)             8(0) 
romer 2(0) 2(0)             1(1) 2(0) 2(0)             2(0) 
scarf* 12(0) 12(0)            10(2) 12(0) 12(0)            12(0) 
shubik 44(4) 43(5)          37(11) 48(0) 48(0)           48(0) 
simple-* 1(1) 1(1)             1(1) 2(0) 2(0)              1(1) 
sppe,tobin 7(0) 7(0)             7(0) 7(0) 7(0)             7(0) 
tin* 128(4) 128(4)         129(3) 128(4) 128(4)          132(0) 
trade12 2(0) 2(0)             2(0) 2(0) 2(0)             2(0) 
trafelas 1(1) 1(1)             2(0) 1(1) 1(1)             2(0) 
Uruguay 7(0) 7(0)             7(0) 7(0) 7(0)             7(0) 
XU* 35(0) 35(0)           35(0) 35(0) 35(0)           35(0) 
Total 473(60) 438(95)       488(45) 505(28) 462(71)       522(11) 

Table 10: Comparative Results (cont.) 
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